

From Prototyping to Production:

How to Balance Speed, Scale, and Quality

Stephanni Ross and Chuck Hodges

May 2015

Production is still very, very hard

Prototyping has never been easier

Prototyping is Easy

Prototyping has reached new levels of speed and

capability

- DIY electronics
- Open source software
- 3D printing
- CNC machining

Tip: You don't have to own a 3D printer—there are lots of print shops

And the costs of prototyping have also plunged

Prototyping is Fast

- Downloading open source software—minutes
- Delivery of a Sparkfun module—overnight
- 3D printing—a half day
- Machining—hours

Tip: Prototyping techniques are useful throughout the product development project

Prototyping is Useful

Prototypes...

- ...get you to a trade show
- ...get you to meetings with VCs
- ...get traffic to your web site
- ...build confidence
- ...enable testing

Tip: Prototypes are also an essential first step toward a production worthy design

Sand Hill Road

Prototyping is Iterative

The best part about all these fast, easy, cheap modern prototyping tools is the ease of iteration

- Test out new looks
- Test out new user interfaces
- Test out technical aspects
- Test out durability

Tip: Prototypes can be used for structural testing, but care must be taken to work around prototype limitations

Find the 3000 ways how not to build a light bulb

Prototyping is Only the First Step

"I have a working prototype.

I'm done, right?"

Tip: Plan accordingly

No

"Am I close?"

Again, sorry, but no.

Prototypes may look 80% done, but at the end of the prototyping phase, the project is maybe 20% done.

Concept Prototyping Design Industrialization Production

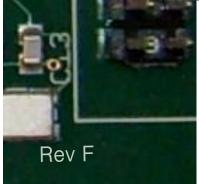
Now Come the Hard Parts

- Designing the final product
- Optimizing the product for manufacturability
- Testing the product
- Iterating the design
- Working the costs down
- Tooling
- Validation testing
- Setting up production
- Setting up supply chain
- Setting up logistics
- Setting up reverse logistics
- Blah, blah, blah

Tip: Most of these tasks scale with volume. It takes a lot more work to design and industrialize a product for 1M/yr production than 100/yr

Product Design

There's a world of difference between a working prototype design and an optimized production-ready design


- Design for cost
- Design for supply chain
- Design for manufacturing / tooling / assembly / test
- Design to work under all conditions and tolerances

Tip: Make sure you generate a list of requirements first.

Design, Build, Test, Repeat

As in the prototyping stage, design is iterative

Ever see Rev A on a production PCBA?

Test early, test often, test till it breaks

Tip: Test under various conditions and tolerances early on.

Plan for iteration; try to avoid it

Design Verification and Validation

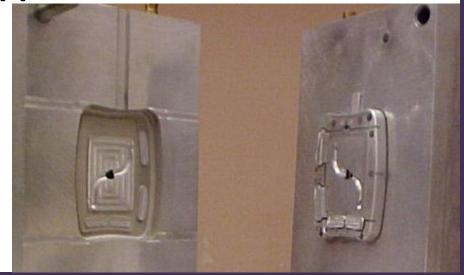
- Design verification is an iterative process,
 comparing design output to design requirements
- Design validation is the formal, statistically meaningful testing that the product meets all

specifications

Tip: Verification can be done on prototypes; validation is done on production worthy units

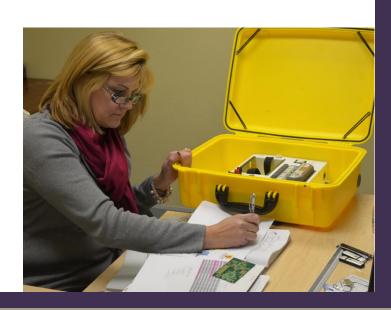
While some products are simple enough that they can be thought of as just a sum of the parts, more complex products need system level thinking

- And system level engineering
- And system level testing...


Tip: Break systems into subsystems. Break subsystems into subassemblies. That's how we eat an elephant.

Tooling

- Tooling is often necessary for custom components, housings, and the like
- Plastics tooling can be expensive and long leadtime
- Minor tooling is also needed for jigs, holders, etc
- Unfortunately, 3D printing and CNC machining are too expensive for most volume applications


Tip: Iterating a design posttooling is really expensive. Slow down a little before releasing and get it right.

Supply Chain

- Setting up an efficient supply chain is one of the most important yet most often ignored industrialization tasks
- Things to consider:
 - Where components come from / where end product ships to
 - Who owns inventory at each stage
 - Flexibility for up sides /down sides
 - Quality, price and delivery time
 - Payment terms
 - Duties, taxes and regulations
- Supply chain effort scales

Tip: It's called a "chain" for a reason—everything is linked

Build vs Buy?

- Early on, thought needs to be put into Build vs Buy, manufacturing in-house or outsourcing
- Applies not just to final assembly but also to subassemblies and even key custom components
- Factor total cost of ownership into the ROI calculation
- While price, delivery and quality are important, don't forget scalability
- And outsourcing is NOT a panacea—there are many pitfalls and gotchas in outsourcing!

Tip: A solution that works for 100 a month may not work best for 100K a month

Local or Off-Shore, China or Not China?

- It's all too easy to say "I want to build local" or "I want to build in China" without weighing the options
- There is no one-size-fits-all answer
- Some issues to consider:
 - Cost of carrying inventory
 - Flexibility
 - Inbound supply chain
 - Outbound logistics / reverse logistics
 - Start-up costs
 - Dealing with iterations
 - **Risks**
 - IP protection
 - Price, delivery and quality

Tip: China ODM options are particularly insidious

PCB Assembly

- For products with electronics content, the PCB assembly (PCBA) is an important part of the manufacturing
- This is typically outsourced to Contract Manufacturers (CMs) by almost all small to midsize companies
- But there are 1000s of CMs
- Things to look for:
 - Technology fit
 - Volume / mix fit
 - Extra steps like box build
 - Location
 - Buying clout
 - o Full but not too full
 - Price, delivery and quality

Tip: CMs need to be managed closely. Trust but verify.

Plastic Molding

- Injection molded plastics are used in many products
- Very low unit costs but high tooling costs
- Much of the plastics supply chain is now in China
- Most US molders want medical / aerospace business
- Need dimensioned 2D drawings, not just 3D CAD

Tip: Protomold will do low volume plastic molding, for a price

Systems Integration

- Systems integration is the most difficult manufacturing step, by far
- It is also the most difficult to outsource successfully
- Demands excellent documentation, well thought out processes, and detailed test strategies

Tip: Subsystem level assembly and test is often the key

Production Test

- It's better to find defective units on the manufacturing floor than to let the customers find those defective units in the field
- It's also important to identify defective units early to allow for timely feedback to the process

If you wait 2 months to spot an uptick in defects, you

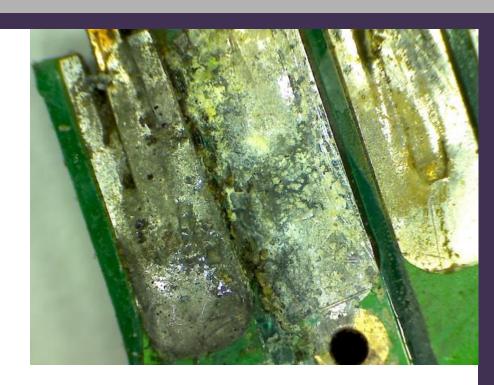
have two months of suspect inventory

Tip: Test too
much at the
start, then back
off as yields
prove that test
isn't needed

Top Schedule Killers

Top things that delay launch schedules:

- Long leadtime components
- Design iterations
- Tooling iterations
- Firmware
- Production test systems
- Shipping / customs delays
- Regulatory testing / retesting
- Chinese New Year



Tip: Planning, planning, planning.

Other Things to Worry About

- Logistics
- Reverse logistics
- Installation
- Regulatory compliance
- Reliability
- Inventory
- Contingency planning
- Yield
- End of Life
- Project management

Tip: Don't worry toooo much

Zebulon Solutions Quick Facts

- Founded 2009, always profitable, grew 70% last year
- Diverse customers: cleantech, industrial, consumer, medical
 - 2/3 from outside Colorado
 - 1/4 from outside the US
- 2100 sq ft lab in Longmont
- Services for startups include:
 - Independent design analysis
 - Design validation testing
 - BOM building and costing
 - Fractional / interim executives
 - Design optimization /cost reductions
 - Supply chain development and contract manufacturer searches

Tip: We're looking for an EE intern (paid) for the summer

Zebulon Solutions

We optimize products for manufacturing and optimize manufacturing for products.

Tip: Like us on Facebook

www.zebulonsolutions.com www.facebook.com/ZebulonSolut